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Abstract: Lung diseases are a serious problem in the lives of many people and their correct 
diagnosis is absolutely important. For this reason, many methods of chest X-ray analysis have been 
developed for this purpose. In this article, the performance of a deep learning algorithm was 
evaluated, varying three of its parameters: dropout rate, number of neurons in the fully-connected 
layer (FCL) and pooling layer type, applied to the classification of lung diseases in children. A 
Convolutional Neural Network (CNN) with MobileNet architecture was applied on 5,241 pediatric 
chest X-ray images. The best results were for configurations of 32 neurons in the FCL and average 
pooling for down sampling. Thus, the combination of the variation of the three parameters mentioned 
with two values in each one, a total of eight CNNs were trained and evaluated. The networks that 
showed the best results were configured with 0.5 and 0.7 dropout, 32 dense layer neurons and the 
medium pooling layer. 
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Aplicação da Rede Neural Convolucional MobileNet para a 
classificação de imagens pediátricas de raio-x de tórax 

 
Resumo: Doenças pulmonares são um problema sério na vida de muitas pessoas e seu diagnóstico 
correto é extremamente importante. Por esse motivo, muitos métodos de análise de raios-X de tórax 
foram desenvolvidos. Neste artigo, foi avaliado o desempenho de um algoritmo de aprendizado 
profundo, variando três de seus parâmetros: taxa de abandono, número de neurônios na camada 
totalmente conectada (FCL) e tipo de camada de pooling, aplicada à classificação de doenças 
pulmonares em crianças. Uma Rede Neural Convolucional (CNN) com arquitetura MobileNet foi 
aplicada em 5.241 imagens de raios-X de tórax pediátricos. Os melhores resultados foram para 
configurações de 32 neurônios no FCL e pooling médio para down sampling. Desta forma, a 
combinação da variação dos três parâmetros citados com dois valores em cada um, foram treinadas 
e avaliadas um total de oito CNNs. As redes que demonstraram os melhores resultados foram 
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configuradas com 0,5 e 0,7 de taxa de abandono, 32 neurônios na camada densa e a camada de 
pooling médio. 

Palavras-chave: Raios-X, Rede Neural, MobileNet. 

 
1. Introduction 

Chest radiography is one of the most efficient and simple techniques for examining medical 
images. It allows the production of images of the lungs, heart, airways and other areas. Its 
interpretation can allow the diagnosis of several types of diseases, including pneumonia, 
interstitial lung diseases, pneumothorax, nodule in the lung, bone fracture, among others. 

However, identifying anomalies on chest radiographs is not always a trivial task, even for 
the most experienced radiologists. Thus, the development of a diagnostic aid system for 
radiologists is of great importance. Recently, deep neural networks have been widely 
studied and applied to medical diagnosis problems (YAMASHITA et al., 2018). Deep 
Learning refers to machine learning models that have their deepest structure, giving it a 
better ability to obtain higher levels of abstraction from the input data. Deep neural networks, 
specifically Convolutional Neural Networks (CNN), have gained a lot of attention in the 
medical field due to the great effectiveness in image classification problems (MINNEMA et 
al., 2018).  

In this context, image classifiers based on deep learning have been achieving excellent 
predictive performance, in some cases showing performance superior to that of human 
specialists in such activities, such as the results obtained in the works of BUETTI-DINH et 
al. (2019), AVENDI et al. (2016) and KRIZHEVSKY et al. (2012). 

This article presents the application of a recent CNN architecture, known as MobileNet, for 
the classification of chest X-ray images with fifteen different classes: atelectasis, 
consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion, 
pneumonia, thickening pleural, cardiomegaly, nodule, hernia, lung mass and “no findings”, 
for images without anomalies. Figure 1 shows some images of the most common diseases 
in the database used. Predictive performance is evaluated comparatively for eight different 
MobileNet architectural configurations. 

Figure 1 - Examples of diseases on chest x-ray 

 

Font: Adapted from Wang et al. (2019) 

2. Convolutional Neural Networks (CNN) 

Neural networks are computational models of machine learning inspired by biological neural 
networks. These networks are widely used in pattern recognition tasks, such as image 
recognition, speech recognition, object detection, among others (HAFEMANN, 2014). Since 
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1990s have been development of Machine Learning algorithms a specialized area of 
research in Artificial Intelligence (AI) and based of human sensory response (KHAN et al., 
2020).   

The most basic model of neural networks, composed of a single neuron, is called Perceptron 
(GAD, 2018). This model is able to recognize patterns, but in a limited way, as it groups only 
the data that are linearly separable. An alternative to deal with non-linear problems, as is 
the case with most problems in the real world, is the Multilayer Perceptron (MLP) neural 
network. MLP is a generalization of Perceptron, so that the sets of neurons are arranged in 
multiple layers. 

The difficulty of traditional algorithms in dealing with problems such as computer vision and 
speech recognition motivated the development of Deep Learning (DL) algorithms. Deep 
Learning algorithms are about MLP neural network architectures with more than two hidden 
layers and techniques that train these models efficiently. In addition, DL is a powerful tool to 
make a classifier, in this way, the machine will recived the data and find what features use 
in order to get it done this (GAD, 2018).  The increase in the number of layers of a neural 
network results in a considerable increase in the number of parameters that must be 
adjusted in the learning algorithm. 

There are two crucial factors for deep learning to be able to perform satisfactorily: 
computational power and data volume. Therefore, deep learning only became viable due to 
the lower cost of sensors and other equipment capable of generating huge volumes of data 
for the training of a network and the increased processing capacity of machines with Graphic 
Processing Unit (GPU). Moreover, the connections between neurons has two 
characteristics: the weight and the bias, that impact on time to train such networks, and in 
some cases, it is impossible to train neural networks on machines that have limited GPU 
and memory capabilities (GAD, 2018). 

The Convolutional Neural Networks (CNN) are MLP architectures that mimics the human 
processing of Visual Cortex, and are one of the best features to classificate image content. 
Design of CNN was inspired by Hubel and Wisel’s work (KHAN et al., 2020). Furthermore, 
these applications are widely used in deep learning in tasks such as image classification, 
object tracking, text detection and recognition, action recognition, scenario classification, 
among others (RAMACHANDRAN, 2015). CNN have shown a high capacity to extract 
features with medium and high levels of abstraction from image data. Like other MLPs, these 
neural networks consist of an input layer, multiple hidden layers and an output layer. The 
hidden layers are composed of the convolution, pooling and fully-connected layers (FCL). 

Figure 2 shows a CNN that presents the diagnosis from chest X-ray images. In architecture, 
convolutional layers are responsible for extracting features. Pooling layers reduce the 
dimensionality of the network. The FCL are at the end of the neural network to determine its 
output, by connecting it with all the outputs of the previous layer and making use of an 
activation function. 

Figure 2 - CNN architecture 

 

Font: authors (2020)  
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In image classification tasks, entries are treated as matrices. The length and width of the 
matrix varies according to the dimensions of the image, while the depth is determined by 
the number of color channels that form it, with gray scale and Red-Green-Blue (RGB) being 
the most frequently used. 

The convolutional layer is one of the main units of a CNN, and it is where most of the 
calculations are involved. This layer is composed of non-linear filters that sequentially go 
through the input data and then produce matrices known as features maps. During the 
training process, these filters are automatically adjusted so that they are activated in the 
presence of relevant features, such as the orientation of the edges, lines or color spot. Filters 
are applied to each convolutional layer and the feature maps are then stacked, forming a 
matrix with one dimension more than the original dimension of the images. 

A limitation of the outputs of the convolutional layers is that they record the exact position of 
the features of the input images. In other words, this means that a small change in the 
position of the input image feature will result in a different activation map (RANZATO et al., 
2007). This change in input may come from cropping, shifting or rotating the image. 

A commonly used approach to deal with this problem is the addition of a pooling (down 
sampling) layer. In this process, a reduced version of the input image is created, discarding 
some details, but maintaining structural elements important for classification. There are 
several ways to perform the down sampling, among them are Max Pooling and Average 
Pooling. Max Pooling, most often used in image processing, consists of reducing the size of 
the input layer by taking the maximum values for each region. Thus, this procedure 
eliminates negligible values, creating invariance to small local distortions. In Max Pooling, a 
filter compares the numbers contained in the input and chooses the one with the highest 
value, which is added to the output matrix. After this operation, the filter “slides” over the 
image according to the step size (stride). Average Pooling, in turn, instead of choosing the 
highest value, averages the values contained in the layer. 

Another important concept in the context of CNN is the dropout. Dropout is a regularization 
technique that consists of randomly “shutting down” at each training iteration a percentage 
of the neurons in a layer, re-adding them in the next iteration. This process allows the 
network to learn more. robust attributes, since a neuron cannot depend on the specific 
presence of other neurons. 

The FCL, in turn, are dense layers in which all of their neurons are connected to all of the 
neurons in the anterior layer. In the FCL, the features extracted in the convolutional and 
pooling layers are classified and at the end of it, an activation function, usually a Softmax, 
is applied to predict the class of the input image. 

Activation functions are non-linear functions connected to the end of each neuron. Also 
inspired by the biological process, these functions determine the output signal based on the 
input signal and the activation threshold. Other examples of common activation functions, 
depending on the application, include: sigmoid, hyperbolic tangent and ReLu. 

2.1 Convolutional Neural Networks to classification images of X-ray 

Sahlol et al., (2020), propouse a method for classification of chest X-ray images using 
MobileNet, a CNN model, which was previously trained on the ImageNet dataset. The 
authors, applies the method to diagnostics tuberculosis, which is an infectious disease that 
attacks the lungs. It selected 25 best features for Shenzen, and 19 best features for Dataset 
2. The paper conclude that classification accuracy was 90.2% for Shenzen and 94.1% for 
Dataset 2. 

On the other hand, the paper of Gündel et al., (2018), proposed a location aware Dense 
Network to detect pathologies in chest X-ray images. Method was applied in a community 
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that containing 86,876 patients and 297,541 chest X-ray images. Additionally, to multi-label 
setup, they used a variant of DenseNet with 121 layers, and each output was normalized 
with a sigmoid function to [0,1]. Gündel et al., (2018) conclude that they research has 
potential to support throughput reading of the radiologist, to gain more confidence by asking 
an artificial intelligence system a second opinion. 

Apostolopoulos and Mpesiana (2020), applied CNN architectures VGG19 and MobileNetV2 
to classificate x-ray images from 3 types of patients: common bacterial pneumonia, COVID-
19 and normal incidents. The researchers used two datasets, and concluded that 
classification accuracy on Dataset 1 of MobileNet V2 was higher effective than VGG19 for 
specific classification task, and for Dataset 2 the MobileNet V2, distinguished the COVID-19 
cases from other cases of dataset. 

Finally, the work of Togaçar, Egen and Cömert (2020) used Deep Learning models 
MobileNet V2 and SqueezeNet to classify x-ray images and detect COVID-19 disease. The 
authors, trained dataset with these two deep learning models and the result obtained were 
processed using the Social Mimic optimization method, they conclude that work obtained a 
classificate rate of the proposed approach was 99.27%. 

2.2 MobileNet 

In 2017, Howard et al. (2017) proposed a new class of CNN called MobileNet. Designed to 
be a small network, it allows faster and easier integration into applications for mobile 
devices. Moreover, Togaçar, Egen and Cömert (2020), presents MobileNet as a deep 
learning model to be used in low  hardware cost devices. Due to its Depthwise Separable 
Convolution strategy, MobileNet has reduced its computational complexity. Figure 3 shows 
the architecture of this CNN. 

Figure 3 - MobileNet architecture 

 

Font: Howard et al., 2017 

The MobileNet architecture available in the Keras library documentation presents the pre-
trained network in the ImageNet database, which is an image bank that contains more than 
14 million images divided into more than 20,000 categories. Details of MobileNet can be 
obtained at: https://keras.io/applications/#mobilenet. 
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To realize the experiments of this work, was applied the code developmented by Kevin 
Mader (2017), which is disponibilied on the Kaggle platform, the author used the code to 
classify dataset of integral form (with adults and pediatrics datas). 

 3. Materials and methods 

In this article, for training and validation of MobileNet models, a subset consisting of pediatric 
images from the benchmark data set known as “NIH Chest X-rays” was used, available at: 
https://www.kaggle.com/nih-chest-xrays/data. Originally, this set contains 112,120 frontal 
chest X-ray images of more than 30,000 patients (including adults and pediatricians), and is 
available from the National Institutes of Health of United States of America (NIH). To select 
only pediatric patients, the focus of this article, we selected only images whose values for 
the feature “PatientAge” were less than eighteen years old. Figure 4 shows the distribution 
of the frequency of ages in the subset of pediatric images. 

Figure 4 - Frequency distribution of pacients’ ages 

 
Font: authors (2020)  

Considering this selection, the data set used was composed of 5,241 pediatric images 
labeled with one or more of the 13 pathologies and, if the radiography had not presented 
any anomaly, the image was labeled with “no findings” (WANG et al., 2019). Figure 5 shows 
the distribution of the data set according to the pathologies found in each image. 

Figure 5 - Distribution of the classes of the pediatric data set 

 
Font: authors (2020)  
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A total of eight experiments were performed (each of which is a different MobileNet 
configuration) with 50 iterations each. The performance criterion for comparatively 
evaluating the eight configurations was the Area Under Curve (AUC) weighted by the 
number of occurrences of each disease. The settings for each experiment are shown in 
Table 1. 

 

Table 1 - Configurations of the experiments 

Experiment Downsampling 
Number of neurons 

in the FCL 

Dropout 

rate 

A 
Average 

Pooling 
32 0,5 

B 
Average 

Pooling 
32 0,7 

C 
Average 

Pooling 
64 0,5 

D 
Average 

Pooling 
64 0,7 

E Max Pooling 32 0,5 

F Max Pooling 32 0,7 

G Max Pooling 64 0,5 

H Max Pooling 64 0,7 

Font: authors (2020)  

 

The algorithms were implemented in the development environment Spyder (version 3.3.6) 
in Python language (version 3.7.3). The choice of this language is due to its widespread use 
in academia, its syntax is relatively simple. In addition, its flexibility allows interaction with 
other software. All executions of the algorithms were performed using a Samsung Odyssey 
notebook with an Intel Core i7 - 7th generation 2.8GHz processor, and 8 GB of RAM. The 
computer has an NVIDIA GeForce GTX 1050 video card and Windows 10 Pro 64-bit 
operating system. 

4. Results analysis 

Initially, for each experiment, the images were classified, with one disease attributed to each 
image. No cases of hernia were found in the set of pediatric images, so this class was 
removed before the classification algorithms were run. The most common predicted class 
was “No Findings”, which actually does not represent any disease. Thus, a treatment was 
applied to remove all instances whose classes were “No Findings” as a way of trying to 
balance the prevalence of classes to a certain extent. In order to generate new copies of 
training data to increase the capability of generalizability of the model, a data augmentation 
procedure was also applied as well. The percentage of images classified as being for each 
disease for each experiment is shown in Table 2. The column called “Actual” shows the 
actual prevalence of each disease in the data set and the remaining columns are the 
percentages of instances predicted to belong to each disease.  
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Table 2 - Classification results 

 
Actual 

(%) 

Predicted (%) 

A B C D E F G H 

Atelectasis 7.52 3.40 7.63 11.65 9.11 6.09 7.97 5.76 1.97 

Cardiomegaly 3.47 2.79 10.96 1.26 9.15 0.07 2.42 4.09 5.22 

Consolidation 5.51 4.94 5.51 5.91 4.65 3.09 3.56 1.86 1.11 

Edema 2.98 0.67 4.00 0.53 3.65 2.69 0.45 1.39 0.52 

Effusion 11.18 6.90 14.71 8.59 12.27 1.51 5.22 5.85 1.08 

Emphysema 1.11 0.43 0.49 1.37 2.80 0.71 0.17 0.98 0.77 

Fibrosis 0.34 0.66 0.37 0.21 0.04 0.11 0.08 0.08 1.71 

Infiltration 24.04 11.37 17.52 25.91 14.25 8.98 11.62 21.15 11.85 

Mass 3.47 3.15 7.50 4.21 2.58 0.25 4.12 1.01 2.02 

Nodule 4.39 0.46 4.01 1.58 2.46 1.83 0.53 1.13 5.80 

Pleural Thickening 2.57 0.34 0.72 1.06 0.62 0.13 0.63 0.81 4.58 

Pneumonia 2.17 1.35 14.05 2.97 1.83 1.82 0.21 1.60 5.32 

Pneumothorax 4.73 3.26 4.04 6.74 2.62 1.98 3.26 0.59 3.00 

Font: authors (2020)  

 

After that, the AUC values for each disease were obtained. The results indicated that 
experiments A and B obtained better average performances among all experiments, with 
AUC value of 0.59, while experiment D was the one that presented the worst performance, 
with AUC of 0.55. These AUC values are presented in Table 3. As explained at the beginning 
of this section, the class “No Findings”, was suppressed before run the classification. 

 

Table 3 - AUC values 

 A B C D E F G H 

Atelectasis 0.55 0.63 0.59 0.57 0.55 0.55 0.53 0.56 

Cardiomegaly 0.64 0.65 0.55 0.59 0.60 0.58 0.63 0.61 

Consolidation 0.59 0.56 0.56 0.55 0.59 0.60 0.59 0.61 

Edema 0.67 0.63 0.57 0.63 0.64 0.59 0.64 0.65 

Effusion 0.62 0.63 0.62 0.64 0.63 0.67 0.61 0.62 

Emphysema 0.62 0.51 0.62 0.48 0.56 0.51 0.69 0.40 

Fibrosis 0.52 0.56 0.48 0.37 0.57 0.58 0.52 0.48 

Infiltration 0.58 0.57 0.56 0.57 0.54 0.55 0.59 0.55 

Mass 0.58 0.60 0.52 0.54 0.63 0.53 0.52 0.57 

Nodule 0.59 0.55 0.55 0.55 0.51 0.52 0.48 0.57 

Pleural 

Thickening 
0.61 0.67 0.56 0.62 0.60 0.57 0.53 0.62 

Pneumonia 0.54 0.58 0.54 0.49 0.51 0.53 0.45 0.56 

Pneumothorax 0.57 0.59 0.51 0.58 0.51 0.55 0.60 0.56 

Average 0.59 0.59 0.56 0.55 0.57 0.56 0.57 0.57 

Font: authors (2020) 

 

Using the values in Table 2 as a basis, the weighting mentioned above was applied, 
multiplying the AUC values for each class by the corresponding disease incidence. This 
procedure was carried out with the objective of better comparison between the curves of the 
different diseases, as there is a great imbalance between the quantity of each one. Among 
the eight experiments carried out, considering such weightings, the CNN that presented the 
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best performances were those with 32 neurons in the FCL and with Average Pooling for 
downsampling, that is the experiments A and B again. Their performances were 0.4350 and 
0.4385, respectively. The experiment D set up with Average Pooling, 64 neurons in the FCL 
and dropout rate of 07, presented the worst results as well, with 0.3742. The results are 
shown in Table 4. 

 

Table 4 - Weighted AUC 
 A B C D E F G H 

Atelectasis 0.0414 0.0474 0.0444 0.0429 0.0414 0.0414 0.0399 0.0421 

Cardiomegaly 0.0222 0.0226 0.0191 0.0540 0.0208 0.0201 0.0219 0.0212 

Consolidation 0.0331 0.0314 0.0314 0.0256 0.0331 0.0337 0.0331 0.0342 

Edema 0.0200 0.0188 0.0170 0.0230 0.0191 0.0176 0.0191 0.0194 

Effusion 0.0693 0.0704 0.0693 0.0785 0.0704 0.0749 0.0682 0.0693 

Emphysema 0.0069 0.0057 0.0069 0.0134 0.0062 0.0057 0.0077 0.0044 

Fibrosis 0.0018 0.0019 0.0016 0.0001 0.0019 0.0020 0.0028 0.0016 

Infiltration 0.1394 0.1370 0.1346 0.0812 0.1298 0.1322 0.1418 0.1322 

Mass 0.0201 0.0208 0.0180 0.0139 0.0219 0.0184 0.0180 0.0198 

Nodule 0.0259 0.0241 0.0241 0.0135 0.0224 0.0228 0.0211 0.0250 

Pleural Thickening 0.0163 0.0179 0.0150 0.0038 0.0160 0.0152 0.0142 0.0166 

Pneumonia 0.0117 0.0126 0.0117 0.0090 0.0111 0.0115 0.0098 0.0122 

Pneumothorax 0.0270 0.0279 0.0241 0.0152 0.0241 0.0260 0.0284 0.0265 

Total 0.4350 0.4385 0.4173 0.3742 0.4182 0.4214 0.4248 0.4245 

Font: authors (2020)  

 

5. Final considerations 

This article proposed to compare MobileNet with different types of layer pooling, dropout 
rate and number of neurons in the FCL. MobileNet, known for its simplicity when compared 
to others, stands out for its effectiveness in computer vision tasks and speed in training. 
Using CNN pre-trained in the ImageNet database, MobileNet has been trained, validated 
and tested with NIH Chest X-ray pediatric data using each of the eight proposed 
configurations. All results show that experiments A and B performed better with the pediatric 
images from the NIH Chest X-ray dataset and experiment D had the worst performance in 
the classification of images. 

Although, compering the results of AUC presented in study, it is necessary improve the 
architecture configuration, because compered the best results obtained are bottom of others 
in different architecture, like the work of Bar Y. et al. (2015) which in some CNNs of x-ray 
images performed with results between 0,72 and 0,92. 

As the present investigation is still ongoing and considering what was intended with this 
stage of the research, the results were considered satisfactory. As future research it is 
suggested to compare the performance of MobileNet with other CNN architectures in the 
literature, from the classic LeNet-5, AlexNet and VGG16 and the modern Inception, ResNet, 
ResNeXt and DenseNet. Another future perspective is the application of combinatorial 
optimization for hyperparameters fine tuning. 
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